Collaborative Filtering - spark.mllib
http://spark.apache.org/docs/latest/mllib-collaborative-filtering.html#collaborative-filtering
In the following example we load rating data. Each row consists of a user, a product and a rating. We use the default ALS.train() method which assumes ratings are explicit. We evaluate the recommendation model by measuring the Mean Squared Error of rating prediction.
Result :
Mean Squared Error = 5.491294660658085E-6

-------------------------------------------------------------------------------------------------------
ERROR : taskSchedulerImpl: Initial job has not accepted any resources
http://www.datastax.com/dev/blog/common-spark-troubleshooting
-------------------------------------------------------------------------------------------------------
ALS
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.recommendation.ALS$
ALS.scala
https://github.com/apache/spark/blob/v1.6.1/mllib/src/main/scala/org/apache/spark/mllib/recommendation/ALS.scala
Movie Recommendations with MLlib
https://databricks-training.s3.amazonaws.com/movie-recommendation-with-mllib.html
Dataset - MovieLens 1M Dataset
http://grouplens.org/datasets/movielens/
沒有留言:
張貼留言